Home

What is BIM?



      Building Information Modeling (BIM) is an intelligent 3D model-based process that gives architecture, engineering, and construction (AEC) professionals the insight and tools to more efficiently plan, design, construct, and manage buildings and infrastructure.
      
     Building information modeling (BIM) is a process supported by various tools and technologies involving the generation and management of digital representations of physical and functional characteristics of places. Building information models (BIMs) are files (often but not always in proprietary formats and containing proprietary data) which can be extracted, exchanged or networked to support decision-making regarding a built asset. Current BIM software is used by individuals, businesses and government agencies who plan, design, construct, operate and maintain diverse physical infrastructures, such as water, refuse, electricity, gas, communication utilities, roads, railways, bridges, ports and tunnel.



BIM origins and elements

     The concept of BIM has existed since the 1970s.
The term 'building model' (in the sense of BIM as used today) was first used in papers in the mid-1980s: in a 1985 paper by Simon Ruffle eventually published in 1986, and later in a 1986 paper by Robert Aish - then at GMW Computers Ltd, developer of RUCAPS software - referring to the software's use at London's Heathrow Airport. The term 'Building Information Model' first appeared in a 1992 paper by G.A. van Nederveen and F. P. Tolman.
However, the terms 'Building Information Model' and 'Building Information Modeling' (including the acronym "BIM") did not become popularly used until some 10 years later. In 2002, Autodesk released a white paper entitled "Building Information Modeling, and other software vendors also started to assert their involvement in the field. By hosting contributions from Autodesk, Bentley Systems and Graphisoft, plus other industry observers, in 2003, Jerry Laiserin helped popularize and standardize the term as a common name for the digital representation of the building process. Facilitating exchange and interoperability of information in digital format had previously been offered under differing terminology by Graphisoft as "Virtual Building", Bentley Systems as "Integrated Project Models", and by Autodesk or Vectorworks as "Building Information Modeling".
The pioneering role of applications such as RUCAPS, Sonata and Reflex has been recognized by Laiserin as well as the UK's Royal Academy of Engineering.
As Graphisoft had been developing such solutions for longer than its competitors, Laiserin regarded its ArchiCAD application as then "one of the most mature BIM solutions on the market. Following its launch in 1987, ArchiCAD became regarded by some as the first implementation of BIM,[15][16] as it was the first CAD product on a personal computer able to create both 2D and 3D geometry, as well as the first commercial BIM product for personal computers.



Definition

        The US National Building Information Model Standard Project Committee has the following definition:
          Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition.
Traditional building design was largely reliant upon two-dimensional technical drawings (plans, elevations, sections, etc). Building information modeling extends this beyond 3D, augmenting the three primary spatial dimensions (width, height and depth) with time as the fourth dimension (4D) and cost as the fifth (5D).
More recently there are also references to a sixth dimension (6D) representing building environmental and sustainability analysis, and a seventh dimension (7D) for life-cycle facility management aspect, although there are conflicting definitions (6D BIM).
BIM therefore covers more than just geometry. It also covers spatial relationships, light analysis, geographic information, and quantities and properties of building components (for example, manufacturers' details).
BIM involves representing a design as combinations of "objects" – vague and undefined, generic or product-specific, solid shapes or void-space oriented (like the shape of a room), that carry their geometry, relations and attributes. BIM design tools allow extraction of different views from a building model for drawing production and other uses. These different views are automatically consistent, being based on a single definition of each object instance. BIM software also defines objects parametrically; that is, the objects are defined as parameters and relations to other objects, so that if a related object is amended, dependent ones will automatically also change. Each model element can carry attributes for selecting and ordering them automatically, providing cost estimates as well as material tracking and ordering.
For the professionals involved in a project, BIM enables a virtual information model to be handed from the design team (architects, landscape architects, surveyors, civil, structural and building services engineers, etc.) to the main contractor and subcontractors and then on to the owner/operator; each professional adds discipline-specific data to the single shared model. This reduces information losses that traditionally occurred when a new team takes 'ownership' of the project, and provides more extensive information to owners of complex structures.



No comments:

Post a Comment